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Communicated by C. Signorini

Abstract. A simple analytic expression is proposed for the total low-lying dipole strength observed in the
break-up of weakly bound systems. The model assumes pure “single-particle” transitions from the “halo”
weakly bound state to continuum states treated as plane waves (neutrons) or regular Coulomb functions
(protons). The analytic expression for the total strength approximately depends on the inverse of the
binding energy and the reduced mass of the halo, with correction factors accounting for the charge of the
halo and the finite size of the potential.

PACS. 24.10.-i Nuclear reaction models and methods – 24.50.+g Direct reactions – 25.60.-t Reactions
induced by unstable nuclei – 25.60.Gc Breakup and momentum distributions

1 Introduction

One of the most interesting outcomings of the experimen-
tation with radioactive beams close to the drip lines is
the observation of a strong multipole strength at the con-
tinuum threshold [1]. In particular, the break-up cross-
sections are generally dominated by the low-lying dipole
B(E1) strength [1]. This feature is particularly useful in
obtaining estimates of capture cross-sections close to the
threshold, which are of relevance to astrophysical pro-
cesses [2], and which cannot normally be measured di-
rectly. It is now well established that the concentration
of multipole strength close to the continuum threshold is
neither associated with a resonant behaviour nor is it asso-
ciated with a novel collective mode [3,4]. It arises, instead,
from the optimal matching of the weakly bound (and long-
tailed) orbital and the low-lying continuum state in the
transition matrix element. The transition matrix element
derives its main contribution from the region far from the
interaction radius where the bound-state wave function
behaves as a simple exponential function. Under these con-
ditions, the details of the mean field become unessential
and the transition matrix element will primarily depend
on the binding energy aside from the characteristics of
the specific single-particle state (angular momentum and
spectroscopic factor).

It is therefore tempting to obtain a simple estimate of
the total low-lying dipole strength in terms of the binding
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energy of the system. In the following sections, we discuss
the derivation of the dipole transition matrix element of
radioactive nuclei with single neutron or proton halo, and
compare them with more complete calculations of these
elements. We shall also further comment on the modifica-
tions of these expressions for nuclei with more complicated
haloes.

2 Low-lying dipole strength for a neutron halo

We will first study the case of a weakly bound one-
neutron system. Within a mean-field picture, we consider
the simplest case of single-particle dipole transitions from
a bound neutron single-particle state φb(r) (with angular
momentum ` and binding energy Eb) to a generic (`

′-state)
φc(Ec, r) with continuum energy Ec. The dipole strength
distribution is given by

dB(E1)/dE = (3/4π)(Zeffe)
2〈`010|`′0〉2

×
∣

∣

∣

∣

∫

drφb(r)φc(Ec, r)r
3

∣

∣

∣

∣

2

, (1)

where bound and continuum states are obtained as eigen-
states of the mean-field potential. In the case of a neutron
dipole transition, the effective charge Zeff is simply given
by −Z/A. For simplicity the spin is neglected throughout
this work. An example of the resulting dipole strength
distribution is given in the inset of fig. 1 for the halo
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Fig. 1. Total B(E1) strength in 19C associated with the single-
particle excitation from a bound 2s-state to the continuum,
as a function of binding energy Eb of the 2s-state. The solid
line is the “exact” calculation, where bound and continuum
single-particle states have been generated from a Woods-Saxon
potential, whose parameters have been adjusted to reproduce
the correct binding energy of the 2s-state. The dashed line is
the prediction of the analytic expression (13). The horizontal
line at 0.71 e2 fm2 corresponds to the experimental value [5].
In the inset we display the energy strength distribution as a
function of the energy in the continuum, for the particular
case of an initial 2s-state bound by Eb = 0.530 MeV. Solid
and dashed curves refer to exact and analytical results.

nucleus 19C. In this case the initial 2s bound state and
the p-wave continuum states have been generated from a
Woods-Saxon potential whose depth has been adjusted to
give a binding energy of 530 keV, as suggested by Naka-
mura et al. [5]. As we change this binding energy (by read-
justing the mean-field potential), the strength distribution
changes both in shape (the position of the maximum of the
distribution approximately scales as the binding energy)
and in the absolute value. The total integrated B(E1) is
plotted as a function of the binding energy in fig. 1, show-
ing a clear inverse-law dependence. The model used has as-
sumed a spectroscopic factor equal to unity for the s-wave
component in the initial state. In the considered case of
19C, the smaller value of the experimental B(E1) (shown
in the figure) with respect to the estimate value, corre-
sponding to the assumed binding energy value of 530 keV,
can be explained assuming a smaller spectroscopic factor
for the s-state in the 1/2+ ground state.

The behaviour of the B(E1) distribution can be de-
scribed analytically in the limit of vanishing binding en-
ergy [6–8]. In this case, in fact, most of the contribution to
the integral in expression (1) arises from the asymptotic
region and therefore, for any value of r, we can treat the
bound state simply in terms of its asymptotic form

φb(r) = Nbh
(1)
` (iar), (2)

(where a2 = 2µEb/h̄
2, µ is the reduced mass of the halo

neutron and Nb is the normalization) and similarly, the

continuum states as plane waves normalized to a delta
function in energy, namely

φc(Ec, r) =

√

2µk

h̄2π
j`′(kr) (3)

(k2 = 2µEc/h̄
2). Under this assumption on the wave func-

tions, the B(E1) distribution gets the analytic form in
terms of the binding energy Eb (via the momentum a)
and the continuum energy Ec (via the momentum k):

dB(E1)/dE =
3

4π
(Zeffe)

2〈`010|`′0〉2

×
∣

∣
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∣

∣

2Nbk
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(
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2

. (4)

The strength distributions get even simpler forms in the
case of transitions starting from initial s- or p-states. In
the case of initial s-state the normalization Nb is equal to√
2a3 and one gets

dB(E1)/dE(s→ p) =
3h̄2

π2µ
(Zeffe)

2

√
EbE

3/2
c

(Ec + Eb)4
(5)

characteristically predicting a maximum at Ec = 3/5Eb.
Similarly in the case of initial p-state one gets dipole re-
sponse functions with energy dependence

dB(E1)/dE(p→ s) =
µ

2π2h̄2
(h̄2/2µ)7/2(Zeffe)

2

×N2
b

E
1/2
c (Ec + 3Eb)

2

E2
b (Ec + Eb)4

(6)

and

dB(E1)/dE(p→ d) =
6µ

π2h̄2
(h̄2/2µ)7/2(Zeffe)

2

×N2
b

E
5/2
c

E2
b (Ec + Eb)4

. (7)

As a consequence, for a dipole transition from a bound
p-state the maximum of the strength occurs at Ec =
5/3Eb for continuum d-states and Ec = 1

6 (−16 +√
292)Eb ≈ 0.18Eb for continuum s-states (see fig. 2).
We may now address the problem of the total B(E1)

values. The predictions of the simple model can be ob-
tained by integrating over the continuum energy the corre-
sponding strength distribution. A simpler procedure can,
however, be used noting that, in the case of the extreme
single-particle picture where the core plays a passive role
and in the absence of other excited bound states contribut-
ing to the dipole transition, the total B(E1) is simply
related to the mean square radius of the single-particle
bound-state orbital, namely

B(E1) =
3

4π
(Zeffe)

2〈r2〉. (8)
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Fig. 2. B(E1) strength distribution for different situations, all
associated with single-particle excitation from a bound state to
the continuum. In all cases the initial particle is bound with
the same energy (Eb = 0.7 MeV). The cases labelled “neutron”
refer to neutron excitations, those labelled “proton” to proton
excitations. For both cases, we have considered the possibility
of initial s-state (with dipole transition to p-state in the con-
tinuum) and of initial p-state (with final s-state in the contin-
uum). Bound and continuum single-particle states have been
genarated from a Woods-Saxon potential, whose parameters
have been adjusted to reproduce the correct binding energy of
the initial bound state.

Now, under the previous assumption on the bound-state
wave function, the mean square radius for a bound s-state
is simply given by

〈r2〉 = 1

2a2
=

h̄2

4µEb
, (9)

which implies that the B(E1) is inversely proportional to
the binding energy,

B(E1) =
3h̄2

16π
(Zeffe)

2 1

µEb
. (10)

In actual cases, one expects deviations from the simple
law, due to the effect of the binding potential on the bound
wave function both in the internal (deviation from the ex-
ponential behaviour) and in the external region (different
normalization). An expression for this correction can be
obtained assuming a square-well potential of radius R. It
is possible to show that in that case the mean square ra-
dius can be obtained as

〈r2〉 = 2a3R3 + 6a2R2 + 6aR+ 3

6a2(1 + aR)
=

1

2a2
F (Eb, R), (11)

where

F (Eb, R) =
2a3R3 + 6a2R2 + 6aR+ 3

3(1 + aR)
≈ 1 + aR+ a2R2.

(12)
Consequently, the B(E1) assumes the same expression as
before, but with a correction factor, namely

B(E1) =
3h̄2

16π
(Zeffe)

2 1

µEb
F (Eb, R) . (13)

It may be reasonable to assume that the same multiplica-
tive correction factor, that depends on the binding en-
ergy and on the radius R, can be applied to the energy
strength distribution (eq. (5)), even if the introduction
of a finite potential leads to some redistribution of the
strength. In the case of other mean fields (i.e. different
from the square well) the expression becomes only ap-
proximated. In the particular case of a Woods-Saxon po-
tential, the equivalent square-well radius should be larger
than that of the Woods-Saxon potential because of the dif-
fuseness of the latter. A rough estimate indicates a value
of R = RWS + 3d, d being the diffusivity of the potential
(typically d = 0.6 fm).

The B(E1) values obtained with the analytic expres-
sion are compared in fig. 1 with the exact values. As ap-
parent from the figure, there is a very good agreement,
even for relatively large binding energies (of the order of
1–2 MeV). Similar agreement is obtained for the energy
strength distribution, as shown in the inset. To get an idea
of the effect of the correction factor (12), its value is about
2 for Eb = 0.7 MeV, reducing to a 10% correction only for
binding energies less than 10 keV.

3 The case of charged haloes

The previous picture has inevitably to be modified in the
case of charged haloes. In this case, in fact, aside from the
different expression for the effective charge Zeff = N/A, we
expect ceteris paribus a reduction of the B(E1) as a con-
sequence of the confining effect on the bound-state wave
function originating from the Coulomb barrier. To give
an idea of the effect, we compare in fig. 2 the B(E1) en-
ergy distributions for one-proton and one-neutron haloes,
taking the same value of the binding energy. We have con-
sidered both the cases of s and p initial value of the or-
bital angular momentum. For the sake of comparison, to
avoid the variation of other parameters we have consid-
ered in both cases an ideal (although unrealistic) system
with mass A = 8 and a nucleon binding energy Eb = 0.7
MeV. In the case of a proton halo, the strength distribu-
tion is shifted to higher energies, together with a damping
of the absolute value.

In order to obtain analytic expressions for the response
function also in the case of charged haloes, we adopt the
model of Bhagwat et al. [9] where the asymptotic form
of the proton wave function (in the case of s-wave) is ap-
proximated by

ψb(r) = N0
e−ar

(ar)α
, (14)

where a is defined as before in terms of the binding energy
Eb, while α is dependent on the Coulomb potential and is
defined as

α = 1 +
µqQe2

h̄2a
, (15)

q = 1 being the charge of the proton and Q = (Z − 1)
the charge of the core. The parameter α is thus differ-
ent from unity by a large amount as one passes to very
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Fig. 3. B(E1) strength distribution associated with the single-
particle neutron and proton excitation from a bound s-state to
the continuum. We have chosen a binding energy Eb = 0.3 MeV
for the s-state. The solid line is the “exact” calculation, where
bound and continuum single-particle states have been gener-
ated from a Woods-Saxon potential. The dashed line is the
prediction of the analytic expressions (5) and (18), respectively.

weakly bound systems. To give a simple estimate we as-
sume, however, the normalization constant N0 to be still
equal to (2a3)1/2. Similarly, for the continuum wave func-
tion we can assume

ψ(Ec, r) =

√

2µk

h̄2π

F`(kr, η)

kr
(16)

in terms of the regular Coulomb function F`(kr, η), η =
(Z − 1)µe2/(h̄2k) being the Sommerfeld parameter. Un-
der these assumptions the dipole matrix element from the
bound s-state to the continuum p-state entering in the
B(E1) distribution

dB(E1)/dE =
3

4π
(Zeffe)

2|Ms→p(E1, Eb, Ec)|2 (17)

is analytically given by

Ms→p(E1, Eb, Ec)=

∫

∞

0

ψb(r)ψ(Ec, r)r
3dr =

(

4µa3

h̄2π

)1/2

×k
3/2Γ (2 + iη)Γ (5− α)
3 aα(a+ ik)5−α eπη/2

×2F1
(

5− α, 2− iη, 4, 2ik

a+ ik

)

. (18)

A comparison of the analytic expression with the exact
calculation is performed in fig. 3 for an ideal system of
mass A = 8 and a single-particle halo in a s-state bound by
0.3 MeV. As the figure shows, the approximated formulae
satisfactorily reproduce the exact trend, with both the
shift to higher energies and the reduction in magnitude.

Similar arguments can be carried on for the total
B(E1). As discussed in the previous section, under the
hypothesis of a single-particle excitation and in the ab-
sence of the other bound excited state, the total B(E1)
can be directly obtained from the mean square radius of

0

2

4

6

8

10

12

0.3 0.6 0.9 1.2 1.5

Eb (MeV)

B
(E

1
) 

(Z
e
ff
2
 e

2
 f
m

2
)

neutrons

protons

A=19

Fig. 4. Total B(E1) strength associated with the single-
particle excitation from a bound s-state to the continuum, as
a function of binding energy Eb of the s-state. Both proton
and neutron cases are shown. The solid lines are the “exact”
calculations, where bound and continuum single-particle states
have been generated from a Woods-Saxon potential (modelled
to simulate the 19C nucleus in the neutron case), whose depth
has been adjusted to reproduce the correct binding energy of
the s-state. The dashed lines are the predictions of the analytic
expressions (13) and (20) for the neutron and proton cases, re-
spectively.

the weakly bound proton. In the case of a s-state, using
the asymptotic expression only beyond a certain value of
r and using for smaller values the wave function as that
in a square well, we obtain

〈r2〉p =
(2aR)3e−2aR + 6(2aR)2α−2Γ (5− 2α, 2aR)

12a2(2aRe−2aR + 2(2aR)2α−2Γ (3− 2α, 2aR))
(19)

in terms of the incomplete Gamma function. Note that
for α = 1 (neutral case), this expression reduces to the
previous expression (11). Consequently, the total B(E1)
strength assumes the form

B(E1) =
3h̄2

16π
(Zeffe)

2 1

µEb

× ((2aR)3e−2aR + 6(2aR)2α−2Γ (5− 2α, 2aR))

6(2aRe−2aR + 2(2aR)2α−2Γ (3− 2α, 2aR))
. (20)

A comparison of the analytic expressions (13) and (20)
with the exact calculations are shown for both neutrons
and protons in fig. 4. It can be seen that, at variance with
the neutron case, where the B(E1) increases dramatically
as one proceeds to very low binding energy, the change
for protons is very gradual, indicating that the dominant
effect is due to the Coulomb interaction that damps the
wave function severely in the asymptotic region.

4 Summary and conclusions

We have shown that, under the simplifying assumption
that the main contribution to the dipole transition matrix
elements arise from regions outside the interaction radius,
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a simple analytic expression can be obtained for both neu-
tron and proton halo nuclei (a similar expression has also
been recently proposed by Forssén et al. [10]). Allowing
for corrections due to the effect of the binding potential,
the total B(E1) for a neutron halo nucleus is shown to
be inversely proportional to its binding energy, becoming
very large for nuclei with very small binding energies. In
contrast, in the case of a proton halo nucleus the total
B(E1) still depends on the binding energy but the dom-
inant effect arising from the Coulomb interaction results
in a very gradual increase in its value as one proceeds to
nuclei with very small binding energy. Furthermore, the
Coulomb effect shifts the energy distribution of the dipole
strength to higher continuum threshold and diminishes its
magnitude, compared with that of a neutron halo nucleus.

The arguments developed in the previous sections re-
fer to the case of a system characterized by a single-
nucleon halo. The same argument can be advanced for
multi-nucleon haloes, treated in the cluster model. If sys-
tem (A,Z) is described in terms of a core (A−Ac, Z−Zc)
and a halo of mass Ac, bound with binding energy Eb,
all previous expressions will still hold, with proper val-
ues of the reduced mass µ = (A − Ac)Ac/A and of the
effective charge Zeff = −ZAc/A for a neutral halo, and
Zeff = (Zc(A− Ac)/A)− ((Z − Zc)Ac/A) for a halo with
charge Zc. Simply the initial and final single-particle states
have to be replaced by the initial and final states describ-
ing the relative motion of the two clusters. Dipole transi-
tions will promote the cluster relative motion into a dipole
state with energy in the continuum. An example of this
situation might be provided by the nucleus 7Li, treated as
an alpha plus a triton system [11].

The simple estimates for the total break-up cross-
sections (or the total B(E1)) could be used to predict
capture cross-sections for the inverse processes of rel-
evance to astrophysics. The 1/Eb law suggests the
possibility of making a systematics of all available B(E1)
data. They should in fact be distributed on a unique uni-
versal curve if plotted against the binding energy. To put
on the same footing one-nucleon and cluster haloes, due

to the variation in the reduced mass and effective charge,
when comparing different systems one should compare
the total B(E1) not directly with Eb, but rather with
µEb/(Zeff e)2: the B(E1) should approximately depend
inversely on µEb/(Zeff e)2. Our results differ from the
phenomenological systematics recently advanced by Ko-
lata [12] for the total break-up reaction (and consequently
for the total B(E1) strength within the model of treat-
ing break-up processes as transitions to the continuum),
where a correlation is made between the total cross-section
and the neutron separation energy (which would be dif-
ferent from the binding energy in the case of charged or
cluster haloes).
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